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Abstract -For most materials. the symmetry group is known a priori and deduced from the
realization process. This allows many simplifications for the measurements of the stiffness tensor.
We deal here with the case where the symmetry is a priori unknown. as for biological or geologIcal
materials, or when the process makes the material symmetry axis uncertain (some composites,
monocrystals). The measurements are then more complicated and the raw stiffness tensor obtained
does not exhibit any symmetry in the Voigt's matrical fonn, as it is expressed in the arbitrarily
chosen specimen's base.

A complete ultrasonic measurement of this stiffness tensor from redundant measuremtmts is
proposed. In a second time. we show how to make a plane symmetry pole figure able to give visual
infonnation about the quasi-symmetries of a raw stiffness tensor detennined by any measurement
method. Finally we introduce the concept of distance from a raw stiffness tensor to one of the eight
symmetry classes available f~)J" a stiffness tensor. The method provides the nearest tensor (to the raw
stiffness tensor) possessing a chosen symmetry class, with its associated natural symmetry base.
1998 Elsevier Science Ltd. All rights reserved.

I. INTRODUCTION

I .1. Basic problem: the~material symmetries are unknOlvn
This paper addresses a general problem: the knowledge of the symmetry class and the

symmetry axis ofa material whose stiffness tensor is obtained through different experimental
techniques, either mechanical or acoustic. For most of the materials, the manufacturing
process implies the material symmetry. However, the symmetry axis can be hardly known
when the process is difficult to control: the growing direction of our monocrystal (made of
the )' phase of a nickel-based superalloy) is not precisely known, although the atomic
disposition involves a cubic symmetry. In the case of geological materials the symmetry
class is often unknown. No simplification is then available on the measurement of the
stiffness tensor, the 21 constants have to be identified. This tensor has to be studied to point
out the possible symmetry class of the material.

].2. Measurement a/the entire stillness tensor
The first step is to determine the stiffness tensor of the material before analyzing the

possible symmetries of this tensor. Hayes (1969) has solved the theoretical problem of the
determination of the stiffness tensor C even if the material symmetry is unknown. The
proposed mechanical tests appear to be difficult to perform. Six classic tensile tests in six
independent directions (Franyois, 1995) are also able to give C once the strains in different
directions are measured for each test. This later method implies a tedious machining and
off-axis mechanical tests that are always difficult to perform (Boehler et aI., 1994). In the
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particular case of a priori known symmetries the identification of the symmetric tensor Cs
is easily done (up to orthotropy) with various tensile specimens machined with respect to
the symmetries of the material.

The ultrasonic measurements are used for biological (Van Bursirk et al., 1986) or
geological (Harder, 1985) materials because they are the only method that allows the
measurement of the elastic properties on very small specimens. The transducers are directly
stuck on parallel faces of the sample. This is called the direct contact method. The direction
of the propagation of the ultrasonic waves is then fixed by the geometry of the specimen.
To avoid the problem of coupling between the transducer and the material and to examine
various directions of propagation, the immersion method, in which transducers are sending
the waves to the sample through immobile water, is preferred for plate-shaped composite
materials (Castagnede et al., 1990). Combined with digital signal processing, this technique
ensures a high accuracy of the measurement of the velocity and involves continuously
varying directions of the wave propagation as the plate is rotated. This method has been
fully developed and is practically able to give stiffness tensors up to orthotropy either in
the case of exactly aligned specimen or non aligned specimen (Baste and Hosten, 1990;
Chu et al., 1994) but does not seem to have yet been applied to a real triclinic material. The
direct contact method has been retained in our experiments on small specimens. This
technique allows the determination of the raw stiffness tensor Co in the base .:Jjio linked to
the specimen. the expression raw stilfness tensor refers to a tensor that is perturbed by
errors due to uncertainties of the measurements, to a possible non homogeneity of the
tested specimen.

1.3. Quasi symmetries: indicators and visualization
At this step we suppose a raw stiffness tensor Co determined by some experimental

method in the specimen's base .UJJ(, for example the acoustical method. The 6 x 6 Voigt's
representation table of Co does not exhibit generally the symmetry of the stiffness tensor
as the base .UJJo has no relation with the (unknown) possible principal directions of the
material. Furthermore the raw tensor Co is perturbed by experimental errors. It has
generally no exact symmetry (triclinic) but may be close to a symmetry level (in this case
we say that it has a quasi symmetry). This forbids (or makes complex) the use of classical
indicators like the contractions Cjkk and C'/cki (Jaric, 1994) of a stiffness tensor C.

In order to have a qualitative information on the quasi symmetries of Co, we developed
a map based on the crystallographic pole figures. These maps represent, on a colored scale,
the relative discrepancy between Co and its symmetric according to the plane of normal r.
The "spots" or "lines" indicate the normals of the planes for which Co is close to being
monoclinic. Their number and their relative position reveal Co is close to the level(s) of
symmetry(ies). For example, we will see that the monocrystal exhibits clearly nine spots
corresponding to the cubic symmetry although the tensor is stricto sensu triclinic.

104. The nearest symmetric stillness tensor
Once a symmetry class is chosen using the above pole figure for the stiffness tensor we

have to compute the symmetric tensor Cs belonging to the chosen class of symmetry and
that is the nearest to the raw tensor Co. The natural base :54;) is the base for which the tensor
Cs has the classical form in the 6 x 6 Voigt matrical representation. One way to find Cs and
YJ.;) is to look for the base .YJ that minimizes a function deduced from the classical relations
between the components of the tensor that allow the Voigt's representation (Arts, 1993).
The choice of such minimization functions remains arbitrary and leads to non-intrinsic
functions.

We propose an intrinsic function that creates from Co and the arbitrary base .UJJ a
tensor Cb which has the chosen symmetry group ~Ij. This function calculates the average of
Co on its orbit according to ';1J:!4 related to the base .54. The natural symmetry base :YJ.,) is the
one for which the relative discrepancy D(.UJJ) between Cb and Co is minimum. Then Cb is
Cs, the nearest (to Co) symmetric stiffness tensor and D(.YJ'J) can be called the distance
from Co to Cs: in other words the distance to the symmetry group (I}.
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This knowledge can be useful in other cases than the basic problem described above.
We can imagine, for example, the simplified resolution of some mechanical problems while
using a tensor of a higher symmetry group (fewer independent components), with some
acceptable error.

2. ACOUSTIC MEASUREMENTS

2.1. Description ofa direct contact measurement
The propagation of acoustic waves in solid media is mainly described by the acoustic

or Cristoffel's tensor r (Auld, 1973). It is linked to the unknown stiffness tensor C and for
a given direction 0 of the wave propagation by the following relation:

no) = D'C'D (I)

This symmetric second order tensor no) can be written in a diagonal form. Each eigenvector
(at least three) represents a direction of vibration of the particles ui

, and each corresponding
eigenvalue represents the product p( V)2 where p is the mass density, and V the velocity of
the body wave polarized in the direction u'. The direction u1

, the closest to the propagation
direction D, is called the quasi-longitudinal wave and the two others, u2

.\ the quasi-transverse
waves. This allows us to write no) in the following different form (where "0" represents
the tensorial product) :

.1

no) = I p( Vi
)2 U' 0 ui

i",,,·1

(2a)

Let us call m the direction of the vibration (polarization vector) of both the ultrasonic
transducers: the emitter and the receiver. They are stuck on two parallel faces of the
specimen. In the case of transverse emission m is in the plane orthogonal to D and the
transducers are coupled by a rod (Fig. I). In the case of longitudinal emission m is equal
to D. The generated wave polarized in the direction m is decomposed in the material in the
three directions ui (with a displacement proportional to the scalar product ui

• m) allowed
by the material and each wave propagates at the velocity Vi. As these waves reach suc­
cessively the receiver the displacement measured by the receiver is given by u" m. The
measure (supposing that the transducer has a linear response) is then proportional to
(u" m)2.

This allows the operator, when using transverse transducers (m' 0 = 0), to measure
the polarization angle, [)' from the direction X' to the direction Xl in the set-up coordinates
X' (X I is equal to the direction of propagation 0) (Fig. I), while searching for the maximum

measurement
direction

propagation
direction
Xl =n..._+-_..

Fig. I Experimental set-up for acoustical measurements.
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A
m

~---4-.... n =Xl

Fig. 2. Measurement of the polarization 7J' with transversal transducers.

of the received signal, i.e. when U
i

• m is maximum (Fig. 2). Practically this is not possible
for the quasi-longitudinal wave as u l

• n is close to I, u l
• m is close to 0 and too weak to be

measured: {Jl cannot be measured with our equipment.
For each direction n, the three wave speeds 0 and the two polarization {J" angles (with

rx = 2, 3) of the quasi-transverse waves are finally measured. In this ideal case the measure
is called a complete measure. The two deflection angles qJ' between the plane n1 (orthogonal
to n) and u' (Fig. 2) remain unknown. For each direction n we can define the measured
acoustic tensor fen) equal to:

3

fen) = I p( Vi)2iii ® iii
i= 1

(2b)

All the measured values of a quantity x are denoted by f. The tensor f should be equal to
r [eqn (I)] if the measured values p, 0 and iii were exact. For each measurement along the
direction n we have five experimental values (Vi and (J") and two additional unknowns «P').
Then the determination of the 21 values of the unknown stiffness tensor requires at least
seven different directions n (in case of complete measurements).

2.2. The specimen and the measures

Equipment. The geometry of the specimen is a compromise between simple machining,
high number of faces and small specimen. It has here 13 pairs of parallel faces (Fig. 3).
This will give redundant data (we have seen that the minimum is seven). This redundancy
will reduce the effect of the experimental errors, through a minimization scheme. The
equidistant faces are cut orthogonal to the three vectors XO

I
, X0

2
, X0

3 of the specimen's base
.'fIo, to its bisectors, and the same after a rotation along X0

2 (Table I). We used 5 MHz
"Panametrics" transducers with a 12 mm diameter and a "Saphir" card integrated in a PC
computer. Software has been developed to measure the velocities (using an intercorrelation
technique) and the directions 0'.

Practical experimentation. Table 2 gives the values of the velocities Vi and of the angles
0' for all the faces of the superalloy specimen. The distance between two paraIIel faces is
18.5 mm. The data given (Table 2) have been obtained after three measurements (under

Table I. Position of the specimen's faces

Face ABC .I K L AI .IV /i

Normal's 0 0 0 1/,/2 0 -J Jn 1,2 -- li2 ti2
coordinates III

.'4.

0 I 0 0 1 0 I 1,\/2

0 0 I, 2 0 1 0 I,'J I,.l - ti2 - In

X' B C A A L ····8 C ii' -- A-I B -C·· K -AI .J ,j M--a ." .1- /i
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Fig. 3. Twenty six-faces oak specimen.
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Table 2. Acoustical measurements for the monocrystal

4097

Face A B c I J K L M fi
_._---_.--._----- _.._..__._~-----_ ..._--~-~----_ ...._-----~--------------- ..__..._---_..._---
Vi (m/s) 5437 5316 6131 6098 6066 6098 6151 6066 6165 6275 6244 6296 6307
J/2 (m/s) 3826 3863 3867 3918 3826 3840 3959 3863 3955 3615' 3615* 3676 2712
ii2 C) 0 0 115 115 165 110 125 175 135 130 130 145 37"
,/' (m/s) 1869* 3863 1815' 2237 2143 2212 2134 2154 2244 2674 2396 2460* 3615
II' C) 90 90 25' 25 69 35 35 85 37 45 35* 55* 145*

The * indicates doubtful data.

the same conditions) on the same specimen. This allows us to evaluate the uncertainty of
the experimental procedure. The accuracy of the velocity measurement can be estimated to
±3% and to be about ±5 for the angle. We can remark that the values given for the faces
A, C, Cf. and b are uncertain because the signal was weak and distorted. They will be removed
from the set of data. As a consequence it is possible to have either complete measurement
(faces B, I, J, K, L, M and N for example) or incomplete measurement if the other faces
are also considered to get more experimental data. The following two sections will deal
with the case of complete and incomplete measurements.

2.3. Discrepancy tensor and minimization function ]
The basic idea is to find the set of components of Co that makes every acoustic tensor

r(n) [eqn (I)] as close as possible to every experimental acoustic tensor f(n) [eqn (2b)].
For every measure (for every n) we define the function j(n) from the Euclidean norm of
the discrepancy between nu) and f'(n) :

j(n) = i(r(n) - [(n») 2 (3)

Minimization strateg)'. The "best" raw tensor Co (of every C) and the best deflection
angles <p' are those that minimize the sum .J ofj over the set of different directions n with
complete measurements. As the two sets of variables (the components ofC and the deflection
angles <p") have a completely different role, we chose to use an iterative process: the
minimisation will be done alternately on each set. The first step is relative to the components
of C, while the deflection angles qJ' are set at zero at the beginning of the iterative procedure
(this is the value corresponding to an isotropic tensor).

Minimization of] with respect to the components C jjkl . The condition for .J to be a
minimum with respect to the components of C is the nulIity of the folIowing gradient:

(4)

The measured f}" and the unknown rp" define 0" but not 0'. This vector 0' is assumed to be
orthogonal to 02 and 03 as required for exact measurements.' The classic symmetries of C
are guaranteed by 60 Langrangian multipliers Pm' We show the first of these terms

(5)

The 81 equations (4) and the 60 equations (5) are disposed in a matrix form A' X = 13 in
which the Jim and the Cilkl are stores in the "vector" X, their multipliers in A and the second
members of eqns (4) in B. This linear material system is directly and quickly resolved,
giving the best components Cilkl of C for the given deflection angles rp".

I Even if Il' and III are not exactly orthogonal at this step of the calculation.
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Minimization oleach j with respect to the deflection angles cpx. We now have to minimize
J with respect to the deflection angles cp" with C fixed. As the cp"(n) play an independent
role in eachj(n), we can minimize independently each}(n) with respect to the two deflection
angles. The gradient of} with respect to the deflection angles cp" is given by the following
equations (in which" /\ " represents the vectorial product) :

(6)

with

(7)

and

with

[ai~~1-~_~2J(/(P,

v" = ----------------------------,
110 2

/\ OJ II

(8)

(9)

The knowledge of this gradient allows us to solve this non-linear problem through a
B.F.G.S. (Burlich and Stoer, 1980) method.

Convergence---stopping criteria. Two criteria are retained for stopping the calculation.
A first test is done on the value of J which can be zero if the measurements are simulated
ones, and the second involves the rate of convergence. This rate commonly tends to ]02

after ten iterations.

Practical procedure. One can compute the values of the speeds and of the polarizations
given by this stiffness tensor Co and compare these values to the experimental ones. This
may be useful to check doubtful measurements. The energy velocities are also computed to
distinguish the waves that cannot reach the receiver without parasite reflection. This is the
case for a strong anisotropy and for measurement direction n that are far from the symmetry
axis. In such a case the corresponding measures are removed. Sometimes the received signal
may be too weak to distinguish clearly a shear wave or to obtain its angle ir. In these cases
the set of measurements is incomplete.

2.4. Incomplete measurements
Let us suppose that the speed Vk (and of course, if it corresponds to a transverse wave,

the direction ril) has not been detected or corresponds to a very doubtful data (see Table
2). This situation is more realistic especially with natural material (biology, geology).

We introduce the component Lr) from the components of (r - f) in the base 0' ® fii (i,
) # k).

(10)

We now define the new function h replacingj by:
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136
135
22
52
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Table 3. Raw tensor Co obtained for the monocrystal (OPa)

i36 135 22 ,;') --17
:~39 137 28 11 16
137 233 29 ··49 3
28 29 133 ·····10 -4
II 49 ··10 il9 2
16 3 -4 130 ,j(J(C

1knOVl'tl.'i

hen) =:2 L L~
!,f

4099

(II)

This definition is similar to that off [eqn (3)] if the 0' are orthogonal. The global min­
imization function J has to be the sum of all the functions j(n) corresponding to complete
measures and all the functions hen) corresponding to incomplete ones. This theory cannot
work for a measurement in which two speeds are not known. If the unknown polarization
is quasi transverse, e.g. ex ,= 3, a polarization angle fj3 is missing and forbids us to calculate
the quasi-longitudinal direction of vibration 01 as before (orthogonal to 02 and oj). We
know that the Oi have to be an orthonormed base. This is written:

(12)

Given the variables (P2 and rp3, this condition gives two solutions for {p (so for 03) ; one of
them is good (gives the lowest value fori). The gradient of hen) with respect to C is given
by:

ah(n) known. .

---- = ') L n ® 0' @ 0' @ nac t I}
(13)

Its structure is still linear with respect to the Ciikl and allows us to complete the matrical
direct resolution described above. The gradient with respect to the variables (p., allowing a
B.F.G.S. resolution is given by

Dh(n) known ( ( Doi
. . Dfi! )');-- = L Lii C: n® ~ @ol@n-tn@o'@·-.'-@n

(,(P, 1,/ <l.{J, Ol.{J,
(14)

We detail here the derivatives of il'. If the unknown polarization corresponds to the quasi­
longitudinal wave the calculation remains the same as before [eqns (7)-(9)]. If the unknown
polarization corresponds to the quasi-transverse wave il3

, the derivative D02jt}(p 2 is calculated
as before [eqn (7)], but 0' and its derivative now depend on the value of fp itself dependent
on rp3 [eqn (12)]. We have, in this case:

(15)

The value of ± is given by the choice of the best fP described before [eqn (12)]

Practical results. From the above measurements Cfable 2), we obtained the following
raw stiffness tensor Co for our superalloy specimen (Table 3). The components of this
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Table 4. Nearest cubic tensor Cs for the monocrystal (GPa)

213 (180)
149 (103)
149 (103)

o
o
o

149 (103)
213(180)
149 (1113)

o
o
o

149 (103)
149 (103)
213 (180)

(I

(I

(I

o
()

()

140 (100)
()

()

o
o
o
()

140 (100)
o

o
()

o
o
o

140 (100)

Values in italic are obtained from microhardness tests.

tensor are given in GPa and in the base attached to the specimen. One can also point out
that some components are negative. This is admissible once the eigenvalues of this tensor
are positives which is true in this case. As said, these matrices (written under Voigt's
convention) do not reveal the possible nature of the symmetry of Co; this tensor looks
triclinic. As expressed in !14o, Co cannot, at this step, be compared to the stiffness tensor
measured by the micro-hardness method (Table 4) expressed in the natural symmetry base
i.j{](J related to the lattice.

3. VISUALIZATION OF THE QUASI-SYMMETRIES: POLE FIGURES

3.1. Principle
Let Co be a "raw" stiffness tensor determined by any experimental method, e.g., the

acoustical one presented before. As said in the introduction, this tensor is generally triclinic
(without symmetries) due to experimental errors and expressed in the randomly chosen
specimen's base !14". The pole figures classically used in crystallography represent the
elements of the symmetry group '§. Each symmetry level [of the eight possible (Forte and
Vianello, 1996)] has a different set of symmetry planes (Fig. 4). Plotting the symmetry
planes will allow us to distinguish the symmetry level. Let us introduce the discrepancy
function d(Co, r) :

Co - .'/'[r L
] (Co) II

d(Co, r) = IICol' (IT)

In this expression .'1)[r~](Co) represents the stiffness tensor, symmetrical to Co with respect
to the plane r~, orthogonal to r [see eqn (A 17a,b) in the Appendixj.2 The norm is taken as
the Euclidean one [see eqn (A 17c) in the Appendix]. The distance d is, of course, null if r'
is a symmetry plane for Co. As said, Co is here generally triclinic but may be "close" to
belonging to a higher symmetry group. In this case, some directions r will be such that
d(Co, r) has "low" value. Let us now plot d(Co, r) for each r of the half space; we obtain
the pole figure of symmetry planes. We can see (Figs 5 and 6) some of these pole figures.
The X 03 axis is the normal to sheet plane, X 01 is on the right hand, and XI);> is upwards.
To each "spot" corresponds a plane of "quasi-symmetry". We recall here, for an easier
interpretation, the shape of pole figures in the case of the following quasi-symmetries
(although this can be read in Fig. 4) :

-triclinic: no spots
--monoclinic: one spot
-trigonal: three spots (coplanar, at 120)
- transverse isotropic: one band (infinity of coplanar normals) and one spot (orthogonal)

-orthotropic: three spots (the normals are orthogonal each other)
---tetragonal: five spots (four coplanar normals at 45" and one orthogonal)

cubic: nine spots (normals of nine cube's symmetry planes)
--isotropic: all the map is black.

, Remark: the computation is about 10 times faster while lIsing the Bond's matrices [J].
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Isotropic (002)

CUbi~-~to TranSVB(isotroPIC (~+1)

~TBt~agOnal (5) LLJ
~ •
~ Tri~~~~ (3)

~Ort~~t~~ (3) L=~
±W~onOCliniC (y

~Triclini~j9)

I j

Fig. 4. Symmetry planes for each symmetry level.
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3.2. Examples
A brief analysis of Fig. 5 reveals the cubic nature of our monocrystal. We can clearly

distinguish the nine spots. The cubic symmetry is however non exact, as the value 0 is
nowhere reached for d(Co, r). This cubic symmetry is that of the crystal's atomic structure
and we can remark that the X 03 axis of the specimen is 6° part from the symmetry axis of
the crystal. 3

When the measurements provide less accuracy, the pole figure is not very contrasted
and as a consequence different levels of symmetry are possible. We can see that on the pole
figure obtained from a stiffness tensor Co measured on an oak specimen (Fig. 6). At a first
sight transverse isotropy appears (horizontal zone). A closer examination also shows two
spots in this zone that reveal a tendency to orthotropy. The ultrasonic measurements are
less accurate than those of the monocrystal as the material has some important hetero­
geneity. The minimum value of d(Co, r) can be an indicator of the measurements' precision
if the material is assumed to have some symmetry.

4. COMPUTATION OF THE NEAREST SYMMETRIC STIFFNESS TENSOR

The last example reveals that a more precise del1nition of the "distance" between the
raw stiffness tensor and the different possible symmetries is necessary for the engineer to
choose the most appropriate symmetry level. Furthermore, it is necessary to compute the
nearest (to Co) stiffness tensor Cs that belongs to this class of symmetry and its associated
natural base f!l,j (in which Cs has the classic matrical Voigt's expression).

'XOJ is the axis of the cylinder (before machining the specimen), but X(II and X02 are randomly chosen.
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superalloy

-------------.-------> Xol

Fig. 5. Pole figure of symmetry planes obtained from the superalloy's raw stiffness tensor Co.

oak

--------------.--------> Xol

Fig. 6. Pole figure of symmetry planes obtained from the oak's raw stitliless tensor.
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4.1. General principle
The chosen symmetry for the studied material has a symmetry group ~'I}. This group is

a subgroup of the orthogonal group 0(3) but, as all the (fourth-rank) stiffness tensors have
the punctual symmetry-I, one can consider '!J as a subgroup of SOn) without loss of
information. Most of the notations in the present paper are the ones used by Forte and
Vianello (1996).

Let ~fj!l be a symmetry group ~fj located by an orthonomed base f!4 (in comparison with
the specimen's base f!40).

The raw stiffness tensor Co is a priori tricIinic. We now define the orbit ';§!loCO as the
collection of all the transformations of Co by the elements of ~fjll' The average <~fj;J;'oCo) of
this orbit has, of course. "fj>4 as symmetry group. Let us call Cb such an average,4 which is
the nearest to Co stiffness tensor, having "§K1 as symmetry group:

Cb = <~",oCo) (18)

We now can define a distance between Cb and Co. The following one has the same definition
as d(Co, r) [eqn (17)] when ,,'I} is the symmetry group of the monoclinic symmetry:

(19)

Then, the distance D,j from Co to the considered symmetry group '!J can be defined as the
minimum of the distance D(PJ) when f!4 varies'

DJ = min.J1(D(f!4») (20)

This minimum is numerically found by a simplex (Faurre, 1988) method that determines
three positioning Eulerian angles. One can remark that this distance does not depend on
the arbitrary choice of f!4 0 as the norm above is invariant relative to the choice of the base.
The natural base /!6,j is the argument of the previous minimum:

DJ = D(,j$,j) (20)

and the nearest stiffness tensor CS can now be given as the average of Co on its orbit
according to ~!(J; :

Cs = <"'I}jI,oCo) (21 )

4.2. Symmetry groups olst(flness tensors
In this section we detail the symmetry group for each symmetry level possible for a

stiffness tensor (Forte and Vianello, 1996). As said, we only take into account the elements
ofSOO)·

Triclinic. In the case of the triclinic symmetry, the symmetry group "I} is reduced to the
identity {I}. The distance D is of course zero and the base ;j$() is undefined.

S)!mmetries based on DIl' We consider as symmetry group ~l}iI the dihedral group D/l:
in the orthonormed base f!4 = (i,j, k), D/I is generated by 2/1 (a cyclic subgroup with n
elements, generated by the rotations Q(k, 2n/n) about k of an angle 2n/n) and the rotation
Q(i,n). Dn has 2n elements. The value of n decides reqns (18) and (21)] of the symmetry
class of Cb and, of course, Cs. We have:

. ·n E { I , 2} Cb is monoclinic
--n E {3, 6} Cb is trigonal

41t can be notices that, as.18 is positioning the symmetry group 'IJ.• , Cb can generally not be obtained from a
rotation of another Cb' of this average in comparison to another Jil'.
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Fig. 7. Representation of the construction of a trigonal tensor Cb from a triclinic tensor Co.

--11 E {4} Cb is orthotropic
-11 E {5, 7, 9, ... , \X)} Cb is transverse isotropic
-11 E {8} Cb is tetragonal

In order to clarify this calculation, Fig. 7 illustrates how we can obtain a trigonal tensor
Cb when calculating the average of D30Co. The result for the transverse isotropy is justified
as a stiffness tensor cannot have these symmetry groups Dn [see Theorem I, Forte and
Vianello (1996)]. The symmetry group obtained is the transverse isotropy as it contains D".

Cubic. The symmetry group ~H of cubic stiffness tensors is (!). It is generated, in the base
,@ = (i, j, k), by the dihedral group D4 (defined above) and the rotations Q(i +j +k, 2n/3). It
has 24 elements.

Isotropic. In this case the symmetry group ~(}J4 of isotropic stillness tensors is SO(3).
As this group has an infinite number of elements, this result cannot give directly the nearest
stiffness tensor Cs. We propose here two ways to reach the isotropic symmetry.

The first possibility is to observe that (I) is a maximal subgroup of SO(3). That means
that SO(3) is generated by (9 and every subgroup Y' not included in (0. This method gives
an isotropic stiffness tensor Cs.

The second method proposed here is to take as ~ljil the symmetry group of the dodeca­
hedron 1. It has 60 elements in the following rotations: the rotations Q(n',2n/5) around
the 12 normals of the faces n\ the rotations Q(d,2n/3) around the 12 corners d and the
rotations Q(ek

, 2n/2) around the 30 edges ek
• 1t can be understood that as the stiffness tensor

C cannot have the dodechedral symmetry [Theorem I (Forte and Vianell<), 1996)], the
following group is SO(3) himself. The results, of course, independent of the choice of the
position of f3$ (i.e. the position of the dodecahedron or its conjugated dodecahedron).

4.3. Example
The stiffness tensor Co measured from the superalloy measurements (Table 3) is now

considered. The Table 5 gives the distance D;) to each level of symmetry. We can notice
that Co is really close to the left branch of the tree (the "orthotropic branch"); on the

Table 5. Distance from the raw stilfness tensor Co to each symmetry level

isotropic 34.6 %

cubic 10.5 % transverse isotropic I 21.8 %

tetragonal 9.9 %

orthotropic 8.1 % trigonal I 21.3 %

monoclinic 4.2 %

triclinic 0%
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contrary, the "trigonal branch" is far from Co. It is obvious that the order relation between
the symmetry levels has to be respected. Practically this requires avoiding local minima
while searching for the base f!4.,; [eqn(20)]; the position of base f!4 is first manually set close
to the real minima (using the pole figures of symmetry plane). For low level symmetries it
is generally necessary to try many combinations before finding the absolute minima.

Comparing the distance from Co to each symmetry level of the left branch leads us to
notice that Co is only 2.4% further to the cubic symmetry than to the orthotropic symmetry.
The high level (only three independent constants) cubic symmetry appears, without any
other choice constraints, to be the "right" symmetry level for this material. The nearest
cubic tensor Cs is given in Table 4. The monocrystal has a cubic lattice and X-ray diffraction
measurements allows us to validate the obtained symmetry and position of the base I!J.
Furthernlore, every Cs can be compared to data from mechanical tests made using micro­
hardness tests (Espie, 1996). They allow the measurement of the stiffness tensor especially
on small specimens by using load-unload paths. These measurements have been done with
the hypothesis that the stiffness tensor has a cubic symmetry related to the corresponding
symmetry of the microstructure. The values obtained in the two cases are different but are
close to be proportional (Table 4). This is probably due to the difficulty of performing
mechanical tests on these materials that exhibit some microplasticity even for low strains.

5. CONCLUSION

We propose in this paper a complete method able to provide the entire stiffness tensor
of an unknown elastic material and the full analysis of this tensor. The measurement and
the analysis can be used separately as many methods are now able to give the raw stiffness
tensor.

Our proposed ultrasonic method is therefore easy and seems reliable for homogeneous
materials. The experimental set-up is very simple as a pair of transducers, a card plugged
in PC, a software are sufficient to perform the measurements. A possible extension of this
work concerns the measurements of induced anisotropy, for example due to damage. The
planes symmetry pole figures are, in our opinion, a straightforward visualisation of the
symmetry level of the complex elements that are the stiffness tensors. Their application may
be extended to other tensors (different levels, or with different indicial symmetries).

Finally, the presented computation of the nearest stiffness tensor Cs gives a powerful
complete and fast analysis of the stiffness tensor. Some interesting mathematical devel­
opments will be possible in the case of isotropic symmetry generated by the symmetry
group of the dodecahedron. The concept of distance to a symmetry group leads to some
surprises: in the case of our oak specimen, one can consider it, without any great loss of
information, as transverse isotropic (only five constants) instead of the classic orthotropic
symmetry level (nine constants) that is commonly used for woods.
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APPENDIX: CARTESIAN NOTATION WITH INDICES

If not specilied, the convention summation follows on indices. bjl is the Kronekker symbol and n"k the direct
permutation symboL
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